Disruption of zebrafish somite development by pharmacologic inhibition of Hsp90.

نویسندگان

  • Z Lele
  • S D Hartson
  • C C Martin
  • L Whitesell
  • R L Matts
  • P H Krone
چکیده

Members of the Hsp90 family of molecular chaperones play important roles in allowing some intracellular signaling molecules and transcription factors to reach and maintain functionally active conformations. In the present study, we have utilized the specific Hsp90-binding agent, geldanamycin, to examine the requirement for Hsp90 during zebrafish development. We show that geldanamycin interacts with both the alpha and the beta-isoforms of zebrafish Hsp90 and that geldanamycin-treated embryos consistently exhibit a number of defects in tissues which express either one of these genes. Within the somites, geldanamycin treatment results in the absence of eng-2-expressing muscle pioneer cells. However, early development of adaxial cells, which give rise to muscle pioneers and which strongly express the hsp90alpha gene shortly before muscle pioneer formation, appeared unaffected. Furthermore, development of the notochord, which provides many of the signals required for proper somite patterning and which does not express detectable levels of either hsp90alpha or hsp90beta mRNA, was similarly unaffected in geldanamycin-treated embryos. The data are consistent with there being a temporal and spatial requirement for Hsp90 function within somitic cells which is necessary for the formation of eng-2-expressing muscle pioneers and possibly other striated muscle fiber types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

Expression of hsp90 and hsp90 during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 and hsp90, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 and hsp90 genes in Xenopus laevis, which is ...

متن کامل

Embryonic heat shock reveals latent hsp90 translation in zebrafish (Danio rerio).

There is increasing evidence that more genetic variation is present among metazoans than is normally expressed in the phenotype, due in part to the canalization of development. Among teleosts (as in other vertebrates), this genetic variation is often expressed as phenotypic change in response to environmental cues. Using embryonic zebrafish (Danio rerio), this 'hidden' variation is explored in ...

متن کامل

An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish.

Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains...

متن کامل

Myocyte-specific enhancer factor 2A is essential for zebrafish posterior somite development

Somite development is governed tightly by genetic factors. In the large-scale mutagenesis screens of zebrafish, no mutations were linked to myocyte enhancer factor 2A (MEF2A) locus. In this study, we find that MEF2A knock-down embryos display a downward tail curvature and have U-shaped posterior somites. Furthermore, we demonstrate that MEF2A is required for Hedgehog signaling. MEF2A inhibition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 210 1  شماره 

صفحات  -

تاریخ انتشار 1999